Extensions 1→N→G→Q→1 with N=S3xC23 and Q=C22

Direct product G=NxQ with N=S3xC23 and Q=C22
dρLabelID
S3xC2596S3xC2^5192,1542

Semidirect products G=N:Q with N=S3xC23 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3xC23):1C22 = C23:D12φ: C22/C1C22 ⊆ Out S3xC23248+(S3xC2^3):1C2^2192,300
(S3xC23):2C22 = 2+ 1+4:7S3φ: C22/C1C22 ⊆ Out S3xC23248+(S3xC2^3):2C2^2192,803
(S3xC23):3C22 = C2xD6:D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):3C2^2192,1046
(S3xC23):4C22 = C23:4D12φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):4C2^2192,1052
(S3xC23):5C22 = D4xD12φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):5C2^2192,1108
(S3xC23):6C22 = C24:7D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):6C2^2192,1148
(S3xC23):7C22 = C24:8D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):7C2^2192,1149
(S3xC23):8C22 = C24:9D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):8C2^2192,1153
(S3xC23):9C22 = C6.372+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):9C2^2192,1164
(S3xC23):10C22 = D12:19D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):10C2^2192,1168
(S3xC23):11C22 = C6.1202+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):11C2^2192,1212
(S3xC23):12C22 = C42:24D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):12C2^2192,1242
(S3xC23):13C22 = D12:11D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):13C2^2192,1276
(S3xC23):14C22 = D4xC3:D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):14C2^2192,1360
(S3xC23):15C22 = C24:12D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):15C2^2192,1363
(S3xC23):16C22 = C2xC24:4S3φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):16C2^2192,1399
(S3xC23):17C22 = C2xD4:6D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):17C2^2192,1516
(S3xC23):18C22 = C2xD4oD12φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3):18C2^2192,1521
(S3xC23):19C22 = S3x2+ 1+4φ: C22/C1C22 ⊆ Out S3xC23248+(S3xC2^3):19C2^2192,1524
(S3xC23):20C22 = S3xC22wrC2φ: C22/C2C2 ⊆ Out S3xC2324(S3xC2^3):20C2^2192,1147
(S3xC23):21C22 = C2xC23:2D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3):21C2^2192,1358
(S3xC23):22C22 = C23xD12φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3):22C2^2192,1512
(S3xC23):23C22 = C22xS3xD4φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3):23C2^2192,1514
(S3xC23):24C22 = C23xC3:D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3):24C2^2192,1529

Non-split extensions G=N.Q with N=S3xC23 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3xC23).1C22 = D6:C4:5C4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).1C2^2192,228
(S3xC23).2C22 = D6:C4:3C4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).2C2^2192,229
(S3xC23).3C22 = (C2xC12):5D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).3C2^2192,230
(S3xC23).4C22 = C6.C22wrC2φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).4C2^2192,231
(S3xC23).5C22 = (C22xS3):Q8φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).5C2^2192,232
(S3xC23).6C22 = (C2xC4).21D12φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).6C2^2192,233
(S3xC23).7C22 = C6.(C4:D4)φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).7C2^2192,234
(S3xC23).8C22 = (C22xC4).37D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).8C2^2192,235
(S3xC23).9C22 = (C2xC12).33D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).9C2^2192,236
(S3xC23).10C22 = S3xC23:C4φ: C22/C1C22 ⊆ Out S3xC23248+(S3xC2^3).10C2^2192,302
(S3xC23).11C22 = (C2xC4):6D12φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).11C2^2192,498
(S3xC23).12C22 = (C2xC42):3S3φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).12C2^2192,499
(S3xC23).13C22 = C24.24D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).13C2^2192,516
(S3xC23).14C22 = C24.60D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).14C2^2192,517
(S3xC23).15C22 = C24.25D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).15C2^2192,518
(S3xC23).16C22 = C23:3D12φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).16C2^2192,519
(S3xC23).17C22 = C24.27D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).17C2^2192,520
(S3xC23).18C22 = (C2xD12):10C4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).18C2^2192,547
(S3xC23).19C22 = D6:C4:7C4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).19C2^2192,549
(S3xC23).20C22 = (C2xC4):3D12φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).20C2^2192,550
(S3xC23).21C22 = (C2xC12).289D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).21C2^2192,551
(S3xC23).22C22 = (C2xC12).290D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).22C2^2192,552
(S3xC23).23C22 = (C2xC12).56D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).23C2^2192,553
(S3xC23).24C22 = C24.76D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).24C2^2192,772
(S3xC23).25C22 = C24.32D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).25C2^2192,782
(S3xC23).26C22 = (C22xQ8):9S3φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).26C2^2192,790
(S3xC23).27C22 = C2xC4:D12φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).27C2^2192,1034
(S3xC23).28C22 = C2xC42:7S3φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).28C2^2192,1035
(S3xC23).29C22 = C2xC42:3S3φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).29C2^2192,1037
(S3xC23).30C22 = C24.35D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).30C2^2192,1045
(S3xC23).31C22 = C24.38D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).31C2^2192,1049
(S3xC23).32C22 = C2xC23.11D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).32C2^2192,1050
(S3xC23).33C22 = C2xC23.21D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).33C2^2192,1051
(S3xC23).34C22 = C2xC4:C4:S3φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).34C2^2192,1071
(S3xC23).35C22 = C42:9D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).35C2^2192,1080
(S3xC23).36C22 = C42:11D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).36C2^2192,1084
(S3xC23).37C22 = C42:12D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).37C2^2192,1086
(S3xC23).38C22 = C42:13D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).38C2^2192,1104
(S3xC23).39C22 = D12:23D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).39C2^2192,1109
(S3xC23).40C22 = D4:5D12φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).40C2^2192,1113
(S3xC23).41C22 = C42:18D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).41C2^2192,1115
(S3xC23).42C22 = C42:19D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).42C2^2192,1119
(S3xC23).43C22 = C24.44D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).43C2^2192,1150
(S3xC23).44C22 = C24.45D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).44C2^2192,1151
(S3xC23).45C22 = S3xC4:D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).45C2^2192,1163
(S3xC23).46C22 = C6.382+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).46C2^2192,1166
(S3xC23).47C22 = C6.402+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).47C2^2192,1169
(S3xC23).48C22 = D12:20D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).48C2^2192,1171
(S3xC23).49C22 = C6.422+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).49C2^2192,1172
(S3xC23).50C22 = C6.462+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).50C2^2192,1176
(S3xC23).51C22 = C6.482+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).51C2^2192,1179
(S3xC23).52C22 = D12:21D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).52C2^2192,1189
(S3xC23).53C22 = C6.512+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).53C2^2192,1193
(S3xC23).54C22 = C6.532+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).54C2^2192,1196
(S3xC23).55C22 = C6.562+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).55C2^2192,1203
(S3xC23).56C22 = S3xC22.D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).56C2^2192,1211
(S3xC23).57C22 = C6.1212+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).57C2^2192,1213
(S3xC23).58C22 = C6.612+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).58C2^2192,1216
(S3xC23).59C22 = C6.1222+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).59C2^2192,1217
(S3xC23).60C22 = C6.622+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).60C2^2192,1218
(S3xC23).61C22 = C6.682+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).61C2^2192,1225
(S3xC23).62C22 = S3xC4.4D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).62C2^2192,1232
(S3xC23).63C22 = C42:20D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).63C2^2192,1233
(S3xC23).64C22 = D12:10D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).64C2^2192,1235
(S3xC23).65C22 = C42:22D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).65C2^2192,1237
(S3xC23).66C22 = C42:23D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).66C2^2192,1238
(S3xC23).67C22 = S3xC42:2C2φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).67C2^2192,1262
(S3xC23).68C22 = C42:25D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).68C2^2192,1263
(S3xC23).69C22 = C42:26D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).69C2^2192,1264
(S3xC23).70C22 = C42:27D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).70C2^2192,1270
(S3xC23).71C22 = S3xC4:1D4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).71C2^2192,1273
(S3xC23).72C22 = C42:28D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).72C2^2192,1274
(S3xC23).73C22 = C42:30D6φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).73C2^2192,1279
(S3xC23).74C22 = C2xC23.28D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).74C2^2192,1348
(S3xC23).75C22 = C2xC12:7D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).75C2^2192,1349
(S3xC23).76C22 = C2xC23.14D6φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).76C2^2192,1361
(S3xC23).77C22 = C2xC12:3D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).77C2^2192,1362
(S3xC23).78C22 = C2xC12.23D4φ: C22/C1C22 ⊆ Out S3xC2396(S3xC2^3).78C2^2192,1373
(S3xC23).79C22 = C6.1452+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).79C2^2192,1388
(S3xC23).80C22 = C6.1462+ 1+4φ: C22/C1C22 ⊆ Out S3xC2348(S3xC2^3).80C2^2192,1389
(S3xC23).81C22 = C22.58(S3xD4)φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).81C2^2192,223
(S3xC23).82C22 = (C2xC4):9D12φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).82C2^2192,224
(S3xC23).83C22 = D6:C42φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).83C2^2192,225
(S3xC23).84C22 = D6:(C4:C4)φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).84C2^2192,226
(S3xC23).85C22 = D6:C4:C4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).85C2^2192,227
(S3xC23).86C22 = C4xD6:C4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).86C2^2192,497
(S3xC23).87C22 = C24.59D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).87C2^2192,514
(S3xC23).88C22 = C24.23D6φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).88C2^2192,515
(S3xC23).89C22 = C4:(D6:C4)φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).89C2^2192,546
(S3xC23).90C22 = D6:C4:6C4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).90C2^2192,548
(S3xC23).91C22 = C2xC42:2S3φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).91C2^2192,1031
(S3xC23).92C22 = C2xC4xD12φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).92C2^2192,1032
(S3xC23).93C22 = C2xS3xC22:C4φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).93C2^2192,1043
(S3xC23).94C22 = C2xDic3:4D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).94C2^2192,1044
(S3xC23).95C22 = C2xC23.9D6φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).95C2^2192,1047
(S3xC23).96C22 = C2xDic3:D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).96C2^2192,1048
(S3xC23).97C22 = C2xC4:C4:7S3φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).97C2^2192,1061
(S3xC23).98C22 = C2xDic3:5D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).98C2^2192,1062
(S3xC23).99C22 = C2xD6.D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).99C2^2192,1064
(S3xC23).100C22 = C2xC12:D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).100C2^2192,1065
(S3xC23).101C22 = C2xD6:Q8φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).101C2^2192,1067
(S3xC23).102C22 = C2xC4.D12φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).102C2^2192,1068
(S3xC23).103C22 = S3xC42:C2φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).103C2^2192,1079
(S3xC23).104C22 = C42:10D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).104C2^2192,1083
(S3xC23).105C22 = C4xS3xD4φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).105C2^2192,1103
(S3xC23).106C22 = C42:14D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).106C2^2192,1106
(S3xC23).107C22 = C4:C4:21D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).107C2^2192,1165
(S3xC23).108C22 = S3xC22:Q8φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).108C2^2192,1185
(S3xC23).109C22 = C4:C4:26D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).109C2^2192,1186
(S3xC23).110C22 = C4:C4:28D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).110C2^2192,1215
(S3xC23).111C22 = C22xD6:C4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).111C2^2192,1346
(S3xC23).112C22 = C2xC4xC3:D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).112C2^2192,1347
(S3xC23).113C22 = C2xD6:3D4φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).113C2^2192,1359
(S3xC23).114C22 = C2xD6:3Q8φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).114C2^2192,1372
(S3xC23).115C22 = (C2xD4):43D6φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).115C2^2192,1387
(S3xC23).116C22 = C22xC4oD12φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).116C2^2192,1513
(S3xC23).117C22 = C22xD4:2S3φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).117C2^2192,1515
(S3xC23).118C22 = C22xQ8:3S3φ: C22/C2C2 ⊆ Out S3xC2396(S3xC2^3).118C2^2192,1518
(S3xC23).119C22 = C2xS3xC4oD4φ: C22/C2C2 ⊆ Out S3xC2348(S3xC2^3).119C2^2192,1520
(S3xC23).120C22 = S3xC2.C42φ: trivial image96(S3xC2^3).120C2^2192,222
(S3xC23).121C22 = S3xC2xC42φ: trivial image96(S3xC2^3).121C2^2192,1030
(S3xC23).122C22 = C2xS3xC4:C4φ: trivial image96(S3xC2^3).122C2^2192,1060
(S3xC23).123C22 = S3xC23xC4φ: trivial image96(S3xC2^3).123C2^2192,1511
(S3xC23).124C22 = C22xS3xQ8φ: trivial image96(S3xC2^3).124C2^2192,1517

׿
x
:
Z
F
o
wr
Q
<