extension | φ:Q→Out N | d | ρ | Label | ID |
(S3xC23).1C22 = D6:C4:5C4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).1C2^2 | 192,228 |
(S3xC23).2C22 = D6:C4:3C4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).2C2^2 | 192,229 |
(S3xC23).3C22 = (C2xC12):5D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).3C2^2 | 192,230 |
(S3xC23).4C22 = C6.C22wrC2 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).4C2^2 | 192,231 |
(S3xC23).5C22 = (C22xS3):Q8 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).5C2^2 | 192,232 |
(S3xC23).6C22 = (C2xC4).21D12 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).6C2^2 | 192,233 |
(S3xC23).7C22 = C6.(C4:D4) | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).7C2^2 | 192,234 |
(S3xC23).8C22 = (C22xC4).37D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).8C2^2 | 192,235 |
(S3xC23).9C22 = (C2xC12).33D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).9C2^2 | 192,236 |
(S3xC23).10C22 = S3xC23:C4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 24 | 8+ | (S3xC2^3).10C2^2 | 192,302 |
(S3xC23).11C22 = (C2xC4):6D12 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).11C2^2 | 192,498 |
(S3xC23).12C22 = (C2xC42):3S3 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).12C2^2 | 192,499 |
(S3xC23).13C22 = C24.24D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).13C2^2 | 192,516 |
(S3xC23).14C22 = C24.60D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).14C2^2 | 192,517 |
(S3xC23).15C22 = C24.25D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).15C2^2 | 192,518 |
(S3xC23).16C22 = C23:3D12 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).16C2^2 | 192,519 |
(S3xC23).17C22 = C24.27D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).17C2^2 | 192,520 |
(S3xC23).18C22 = (C2xD12):10C4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).18C2^2 | 192,547 |
(S3xC23).19C22 = D6:C4:7C4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).19C2^2 | 192,549 |
(S3xC23).20C22 = (C2xC4):3D12 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).20C2^2 | 192,550 |
(S3xC23).21C22 = (C2xC12).289D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).21C2^2 | 192,551 |
(S3xC23).22C22 = (C2xC12).290D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).22C2^2 | 192,552 |
(S3xC23).23C22 = (C2xC12).56D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).23C2^2 | 192,553 |
(S3xC23).24C22 = C24.76D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).24C2^2 | 192,772 |
(S3xC23).25C22 = C24.32D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).25C2^2 | 192,782 |
(S3xC23).26C22 = (C22xQ8):9S3 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).26C2^2 | 192,790 |
(S3xC23).27C22 = C2xC4:D12 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).27C2^2 | 192,1034 |
(S3xC23).28C22 = C2xC42:7S3 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).28C2^2 | 192,1035 |
(S3xC23).29C22 = C2xC42:3S3 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).29C2^2 | 192,1037 |
(S3xC23).30C22 = C24.35D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).30C2^2 | 192,1045 |
(S3xC23).31C22 = C24.38D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).31C2^2 | 192,1049 |
(S3xC23).32C22 = C2xC23.11D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).32C2^2 | 192,1050 |
(S3xC23).33C22 = C2xC23.21D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).33C2^2 | 192,1051 |
(S3xC23).34C22 = C2xC4:C4:S3 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).34C2^2 | 192,1071 |
(S3xC23).35C22 = C42:9D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).35C2^2 | 192,1080 |
(S3xC23).36C22 = C42:11D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).36C2^2 | 192,1084 |
(S3xC23).37C22 = C42:12D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).37C2^2 | 192,1086 |
(S3xC23).38C22 = C42:13D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).38C2^2 | 192,1104 |
(S3xC23).39C22 = D12:23D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).39C2^2 | 192,1109 |
(S3xC23).40C22 = D4:5D12 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).40C2^2 | 192,1113 |
(S3xC23).41C22 = C42:18D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).41C2^2 | 192,1115 |
(S3xC23).42C22 = C42:19D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).42C2^2 | 192,1119 |
(S3xC23).43C22 = C24.44D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).43C2^2 | 192,1150 |
(S3xC23).44C22 = C24.45D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).44C2^2 | 192,1151 |
(S3xC23).45C22 = S3xC4:D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).45C2^2 | 192,1163 |
(S3xC23).46C22 = C6.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).46C2^2 | 192,1166 |
(S3xC23).47C22 = C6.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).47C2^2 | 192,1169 |
(S3xC23).48C22 = D12:20D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).48C2^2 | 192,1171 |
(S3xC23).49C22 = C6.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).49C2^2 | 192,1172 |
(S3xC23).50C22 = C6.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).50C2^2 | 192,1176 |
(S3xC23).51C22 = C6.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).51C2^2 | 192,1179 |
(S3xC23).52C22 = D12:21D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).52C2^2 | 192,1189 |
(S3xC23).53C22 = C6.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).53C2^2 | 192,1193 |
(S3xC23).54C22 = C6.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).54C2^2 | 192,1196 |
(S3xC23).55C22 = C6.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).55C2^2 | 192,1203 |
(S3xC23).56C22 = S3xC22.D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).56C2^2 | 192,1211 |
(S3xC23).57C22 = C6.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).57C2^2 | 192,1213 |
(S3xC23).58C22 = C6.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).58C2^2 | 192,1216 |
(S3xC23).59C22 = C6.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).59C2^2 | 192,1217 |
(S3xC23).60C22 = C6.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).60C2^2 | 192,1218 |
(S3xC23).61C22 = C6.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).61C2^2 | 192,1225 |
(S3xC23).62C22 = S3xC4.4D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).62C2^2 | 192,1232 |
(S3xC23).63C22 = C42:20D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).63C2^2 | 192,1233 |
(S3xC23).64C22 = D12:10D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).64C2^2 | 192,1235 |
(S3xC23).65C22 = C42:22D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).65C2^2 | 192,1237 |
(S3xC23).66C22 = C42:23D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).66C2^2 | 192,1238 |
(S3xC23).67C22 = S3xC42:2C2 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).67C2^2 | 192,1262 |
(S3xC23).68C22 = C42:25D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).68C2^2 | 192,1263 |
(S3xC23).69C22 = C42:26D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).69C2^2 | 192,1264 |
(S3xC23).70C22 = C42:27D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).70C2^2 | 192,1270 |
(S3xC23).71C22 = S3xC4:1D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).71C2^2 | 192,1273 |
(S3xC23).72C22 = C42:28D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).72C2^2 | 192,1274 |
(S3xC23).73C22 = C42:30D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).73C2^2 | 192,1279 |
(S3xC23).74C22 = C2xC23.28D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).74C2^2 | 192,1348 |
(S3xC23).75C22 = C2xC12:7D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).75C2^2 | 192,1349 |
(S3xC23).76C22 = C2xC23.14D6 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).76C2^2 | 192,1361 |
(S3xC23).77C22 = C2xC12:3D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).77C2^2 | 192,1362 |
(S3xC23).78C22 = C2xC12.23D4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 96 | | (S3xC2^3).78C2^2 | 192,1373 |
(S3xC23).79C22 = C6.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).79C2^2 | 192,1388 |
(S3xC23).80C22 = C6.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3xC23 | 48 | | (S3xC2^3).80C2^2 | 192,1389 |
(S3xC23).81C22 = C22.58(S3xD4) | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).81C2^2 | 192,223 |
(S3xC23).82C22 = (C2xC4):9D12 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).82C2^2 | 192,224 |
(S3xC23).83C22 = D6:C42 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).83C2^2 | 192,225 |
(S3xC23).84C22 = D6:(C4:C4) | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).84C2^2 | 192,226 |
(S3xC23).85C22 = D6:C4:C4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).85C2^2 | 192,227 |
(S3xC23).86C22 = C4xD6:C4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).86C2^2 | 192,497 |
(S3xC23).87C22 = C24.59D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).87C2^2 | 192,514 |
(S3xC23).88C22 = C24.23D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).88C2^2 | 192,515 |
(S3xC23).89C22 = C4:(D6:C4) | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).89C2^2 | 192,546 |
(S3xC23).90C22 = D6:C4:6C4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).90C2^2 | 192,548 |
(S3xC23).91C22 = C2xC42:2S3 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).91C2^2 | 192,1031 |
(S3xC23).92C22 = C2xC4xD12 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).92C2^2 | 192,1032 |
(S3xC23).93C22 = C2xS3xC22:C4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).93C2^2 | 192,1043 |
(S3xC23).94C22 = C2xDic3:4D4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).94C2^2 | 192,1044 |
(S3xC23).95C22 = C2xC23.9D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).95C2^2 | 192,1047 |
(S3xC23).96C22 = C2xDic3:D4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).96C2^2 | 192,1048 |
(S3xC23).97C22 = C2xC4:C4:7S3 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).97C2^2 | 192,1061 |
(S3xC23).98C22 = C2xDic3:5D4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).98C2^2 | 192,1062 |
(S3xC23).99C22 = C2xD6.D4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).99C2^2 | 192,1064 |
(S3xC23).100C22 = C2xC12:D4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).100C2^2 | 192,1065 |
(S3xC23).101C22 = C2xD6:Q8 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).101C2^2 | 192,1067 |
(S3xC23).102C22 = C2xC4.D12 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).102C2^2 | 192,1068 |
(S3xC23).103C22 = S3xC42:C2 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).103C2^2 | 192,1079 |
(S3xC23).104C22 = C42:10D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).104C2^2 | 192,1083 |
(S3xC23).105C22 = C4xS3xD4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).105C2^2 | 192,1103 |
(S3xC23).106C22 = C42:14D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).106C2^2 | 192,1106 |
(S3xC23).107C22 = C4:C4:21D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).107C2^2 | 192,1165 |
(S3xC23).108C22 = S3xC22:Q8 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).108C2^2 | 192,1185 |
(S3xC23).109C22 = C4:C4:26D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).109C2^2 | 192,1186 |
(S3xC23).110C22 = C4:C4:28D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).110C2^2 | 192,1215 |
(S3xC23).111C22 = C22xD6:C4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).111C2^2 | 192,1346 |
(S3xC23).112C22 = C2xC4xC3:D4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).112C2^2 | 192,1347 |
(S3xC23).113C22 = C2xD6:3D4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).113C2^2 | 192,1359 |
(S3xC23).114C22 = C2xD6:3Q8 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).114C2^2 | 192,1372 |
(S3xC23).115C22 = (C2xD4):43D6 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).115C2^2 | 192,1387 |
(S3xC23).116C22 = C22xC4oD12 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).116C2^2 | 192,1513 |
(S3xC23).117C22 = C22xD4:2S3 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).117C2^2 | 192,1515 |
(S3xC23).118C22 = C22xQ8:3S3 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 96 | | (S3xC2^3).118C2^2 | 192,1518 |
(S3xC23).119C22 = C2xS3xC4oD4 | φ: C22/C2 → C2 ⊆ Out S3xC23 | 48 | | (S3xC2^3).119C2^2 | 192,1520 |
(S3xC23).120C22 = S3xC2.C42 | φ: trivial image | 96 | | (S3xC2^3).120C2^2 | 192,222 |
(S3xC23).121C22 = S3xC2xC42 | φ: trivial image | 96 | | (S3xC2^3).121C2^2 | 192,1030 |
(S3xC23).122C22 = C2xS3xC4:C4 | φ: trivial image | 96 | | (S3xC2^3).122C2^2 | 192,1060 |
(S3xC23).123C22 = S3xC23xC4 | φ: trivial image | 96 | | (S3xC2^3).123C2^2 | 192,1511 |
(S3xC23).124C22 = C22xS3xQ8 | φ: trivial image | 96 | | (S3xC2^3).124C2^2 | 192,1517 |