extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C23)⋊1C22 = C23⋊D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 24 | 8+ | (S3xC2^3):1C2^2 | 192,300 |
(S3×C23)⋊2C22 = 2+ 1+4⋊7S3 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 24 | 8+ | (S3xC2^3):2C2^2 | 192,803 |
(S3×C23)⋊3C22 = C2×D6⋊D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):3C2^2 | 192,1046 |
(S3×C23)⋊4C22 = C23⋊4D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):4C2^2 | 192,1052 |
(S3×C23)⋊5C22 = D4×D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):5C2^2 | 192,1108 |
(S3×C23)⋊6C22 = C24⋊7D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):6C2^2 | 192,1148 |
(S3×C23)⋊7C22 = C24⋊8D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):7C2^2 | 192,1149 |
(S3×C23)⋊8C22 = C24⋊9D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):8C2^2 | 192,1153 |
(S3×C23)⋊9C22 = C6.372+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):9C2^2 | 192,1164 |
(S3×C23)⋊10C22 = D12⋊19D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):10C2^2 | 192,1168 |
(S3×C23)⋊11C22 = C6.1202+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):11C2^2 | 192,1212 |
(S3×C23)⋊12C22 = C42⋊24D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):12C2^2 | 192,1242 |
(S3×C23)⋊13C22 = D12⋊11D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):13C2^2 | 192,1276 |
(S3×C23)⋊14C22 = D4×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):14C2^2 | 192,1360 |
(S3×C23)⋊15C22 = C24⋊12D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):15C2^2 | 192,1363 |
(S3×C23)⋊16C22 = C2×C24⋊4S3 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):16C2^2 | 192,1399 |
(S3×C23)⋊17C22 = C2×D4⋊6D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):17C2^2 | 192,1516 |
(S3×C23)⋊18C22 = C2×D4○D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3):18C2^2 | 192,1521 |
(S3×C23)⋊19C22 = S3×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 24 | 8+ | (S3xC2^3):19C2^2 | 192,1524 |
(S3×C23)⋊20C22 = S3×C22≀C2 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 24 | | (S3xC2^3):20C2^2 | 192,1147 |
(S3×C23)⋊21C22 = C2×C23⋊2D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3):21C2^2 | 192,1358 |
(S3×C23)⋊22C22 = C23×D12 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3):22C2^2 | 192,1512 |
(S3×C23)⋊23C22 = C22×S3×D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3):23C2^2 | 192,1514 |
(S3×C23)⋊24C22 = C23×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3):24C2^2 | 192,1529 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C23).1C22 = D6⋊C4⋊5C4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).1C2^2 | 192,228 |
(S3×C23).2C22 = D6⋊C4⋊3C4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).2C2^2 | 192,229 |
(S3×C23).3C22 = (C2×C12)⋊5D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).3C2^2 | 192,230 |
(S3×C23).4C22 = C6.C22≀C2 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).4C2^2 | 192,231 |
(S3×C23).5C22 = (C22×S3)⋊Q8 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).5C2^2 | 192,232 |
(S3×C23).6C22 = (C2×C4).21D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).6C2^2 | 192,233 |
(S3×C23).7C22 = C6.(C4⋊D4) | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).7C2^2 | 192,234 |
(S3×C23).8C22 = (C22×C4).37D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).8C2^2 | 192,235 |
(S3×C23).9C22 = (C2×C12).33D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).9C2^2 | 192,236 |
(S3×C23).10C22 = S3×C23⋊C4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 24 | 8+ | (S3xC2^3).10C2^2 | 192,302 |
(S3×C23).11C22 = (C2×C4)⋊6D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).11C2^2 | 192,498 |
(S3×C23).12C22 = (C2×C42)⋊3S3 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).12C2^2 | 192,499 |
(S3×C23).13C22 = C24.24D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).13C2^2 | 192,516 |
(S3×C23).14C22 = C24.60D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).14C2^2 | 192,517 |
(S3×C23).15C22 = C24.25D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).15C2^2 | 192,518 |
(S3×C23).16C22 = C23⋊3D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).16C2^2 | 192,519 |
(S3×C23).17C22 = C24.27D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).17C2^2 | 192,520 |
(S3×C23).18C22 = (C2×D12)⋊10C4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).18C2^2 | 192,547 |
(S3×C23).19C22 = D6⋊C4⋊7C4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).19C2^2 | 192,549 |
(S3×C23).20C22 = (C2×C4)⋊3D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).20C2^2 | 192,550 |
(S3×C23).21C22 = (C2×C12).289D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).21C2^2 | 192,551 |
(S3×C23).22C22 = (C2×C12).290D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).22C2^2 | 192,552 |
(S3×C23).23C22 = (C2×C12).56D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).23C2^2 | 192,553 |
(S3×C23).24C22 = C24.76D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).24C2^2 | 192,772 |
(S3×C23).25C22 = C24.32D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).25C2^2 | 192,782 |
(S3×C23).26C22 = (C22×Q8)⋊9S3 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).26C2^2 | 192,790 |
(S3×C23).27C22 = C2×C4⋊D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).27C2^2 | 192,1034 |
(S3×C23).28C22 = C2×C42⋊7S3 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).28C2^2 | 192,1035 |
(S3×C23).29C22 = C2×C42⋊3S3 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).29C2^2 | 192,1037 |
(S3×C23).30C22 = C24.35D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).30C2^2 | 192,1045 |
(S3×C23).31C22 = C24.38D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).31C2^2 | 192,1049 |
(S3×C23).32C22 = C2×C23.11D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).32C2^2 | 192,1050 |
(S3×C23).33C22 = C2×C23.21D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).33C2^2 | 192,1051 |
(S3×C23).34C22 = C2×C4⋊C4⋊S3 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).34C2^2 | 192,1071 |
(S3×C23).35C22 = C42⋊9D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).35C2^2 | 192,1080 |
(S3×C23).36C22 = C42⋊11D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).36C2^2 | 192,1084 |
(S3×C23).37C22 = C42⋊12D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).37C2^2 | 192,1086 |
(S3×C23).38C22 = C42⋊13D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).38C2^2 | 192,1104 |
(S3×C23).39C22 = D12⋊23D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).39C2^2 | 192,1109 |
(S3×C23).40C22 = D4⋊5D12 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).40C2^2 | 192,1113 |
(S3×C23).41C22 = C42⋊18D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).41C2^2 | 192,1115 |
(S3×C23).42C22 = C42⋊19D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).42C2^2 | 192,1119 |
(S3×C23).43C22 = C24.44D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).43C2^2 | 192,1150 |
(S3×C23).44C22 = C24.45D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).44C2^2 | 192,1151 |
(S3×C23).45C22 = S3×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).45C2^2 | 192,1163 |
(S3×C23).46C22 = C6.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).46C2^2 | 192,1166 |
(S3×C23).47C22 = C6.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).47C2^2 | 192,1169 |
(S3×C23).48C22 = D12⋊20D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).48C2^2 | 192,1171 |
(S3×C23).49C22 = C6.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).49C2^2 | 192,1172 |
(S3×C23).50C22 = C6.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).50C2^2 | 192,1176 |
(S3×C23).51C22 = C6.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).51C2^2 | 192,1179 |
(S3×C23).52C22 = D12⋊21D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).52C2^2 | 192,1189 |
(S3×C23).53C22 = C6.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).53C2^2 | 192,1193 |
(S3×C23).54C22 = C6.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).54C2^2 | 192,1196 |
(S3×C23).55C22 = C6.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).55C2^2 | 192,1203 |
(S3×C23).56C22 = S3×C22.D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).56C2^2 | 192,1211 |
(S3×C23).57C22 = C6.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).57C2^2 | 192,1213 |
(S3×C23).58C22 = C6.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).58C2^2 | 192,1216 |
(S3×C23).59C22 = C6.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).59C2^2 | 192,1217 |
(S3×C23).60C22 = C6.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).60C2^2 | 192,1218 |
(S3×C23).61C22 = C6.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).61C2^2 | 192,1225 |
(S3×C23).62C22 = S3×C4.4D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).62C2^2 | 192,1232 |
(S3×C23).63C22 = C42⋊20D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).63C2^2 | 192,1233 |
(S3×C23).64C22 = D12⋊10D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).64C2^2 | 192,1235 |
(S3×C23).65C22 = C42⋊22D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).65C2^2 | 192,1237 |
(S3×C23).66C22 = C42⋊23D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).66C2^2 | 192,1238 |
(S3×C23).67C22 = S3×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).67C2^2 | 192,1262 |
(S3×C23).68C22 = C42⋊25D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).68C2^2 | 192,1263 |
(S3×C23).69C22 = C42⋊26D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).69C2^2 | 192,1264 |
(S3×C23).70C22 = C42⋊27D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).70C2^2 | 192,1270 |
(S3×C23).71C22 = S3×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).71C2^2 | 192,1273 |
(S3×C23).72C22 = C42⋊28D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).72C2^2 | 192,1274 |
(S3×C23).73C22 = C42⋊30D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).73C2^2 | 192,1279 |
(S3×C23).74C22 = C2×C23.28D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).74C2^2 | 192,1348 |
(S3×C23).75C22 = C2×C12⋊7D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).75C2^2 | 192,1349 |
(S3×C23).76C22 = C2×C23.14D6 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).76C2^2 | 192,1361 |
(S3×C23).77C22 = C2×C12⋊3D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).77C2^2 | 192,1362 |
(S3×C23).78C22 = C2×C12.23D4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 96 | | (S3xC2^3).78C2^2 | 192,1373 |
(S3×C23).79C22 = C6.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).79C2^2 | 192,1388 |
(S3×C23).80C22 = C6.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out S3×C23 | 48 | | (S3xC2^3).80C2^2 | 192,1389 |
(S3×C23).81C22 = C22.58(S3×D4) | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).81C2^2 | 192,223 |
(S3×C23).82C22 = (C2×C4)⋊9D12 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).82C2^2 | 192,224 |
(S3×C23).83C22 = D6⋊C42 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).83C2^2 | 192,225 |
(S3×C23).84C22 = D6⋊(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).84C2^2 | 192,226 |
(S3×C23).85C22 = D6⋊C4⋊C4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).85C2^2 | 192,227 |
(S3×C23).86C22 = C4×D6⋊C4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).86C2^2 | 192,497 |
(S3×C23).87C22 = C24.59D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).87C2^2 | 192,514 |
(S3×C23).88C22 = C24.23D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).88C2^2 | 192,515 |
(S3×C23).89C22 = C4⋊(D6⋊C4) | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).89C2^2 | 192,546 |
(S3×C23).90C22 = D6⋊C4⋊6C4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).90C2^2 | 192,548 |
(S3×C23).91C22 = C2×C42⋊2S3 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).91C2^2 | 192,1031 |
(S3×C23).92C22 = C2×C4×D12 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).92C2^2 | 192,1032 |
(S3×C23).93C22 = C2×S3×C22⋊C4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).93C2^2 | 192,1043 |
(S3×C23).94C22 = C2×Dic3⋊4D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).94C2^2 | 192,1044 |
(S3×C23).95C22 = C2×C23.9D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).95C2^2 | 192,1047 |
(S3×C23).96C22 = C2×Dic3⋊D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).96C2^2 | 192,1048 |
(S3×C23).97C22 = C2×C4⋊C4⋊7S3 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).97C2^2 | 192,1061 |
(S3×C23).98C22 = C2×Dic3⋊5D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).98C2^2 | 192,1062 |
(S3×C23).99C22 = C2×D6.D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).99C2^2 | 192,1064 |
(S3×C23).100C22 = C2×C12⋊D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).100C2^2 | 192,1065 |
(S3×C23).101C22 = C2×D6⋊Q8 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).101C2^2 | 192,1067 |
(S3×C23).102C22 = C2×C4.D12 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).102C2^2 | 192,1068 |
(S3×C23).103C22 = S3×C42⋊C2 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).103C2^2 | 192,1079 |
(S3×C23).104C22 = C42⋊10D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).104C2^2 | 192,1083 |
(S3×C23).105C22 = C4×S3×D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).105C2^2 | 192,1103 |
(S3×C23).106C22 = C42⋊14D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).106C2^2 | 192,1106 |
(S3×C23).107C22 = C4⋊C4⋊21D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).107C2^2 | 192,1165 |
(S3×C23).108C22 = S3×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).108C2^2 | 192,1185 |
(S3×C23).109C22 = C4⋊C4⋊26D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).109C2^2 | 192,1186 |
(S3×C23).110C22 = C4⋊C4⋊28D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).110C2^2 | 192,1215 |
(S3×C23).111C22 = C22×D6⋊C4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).111C2^2 | 192,1346 |
(S3×C23).112C22 = C2×C4×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).112C2^2 | 192,1347 |
(S3×C23).113C22 = C2×D6⋊3D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).113C2^2 | 192,1359 |
(S3×C23).114C22 = C2×D6⋊3Q8 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).114C2^2 | 192,1372 |
(S3×C23).115C22 = (C2×D4)⋊43D6 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).115C2^2 | 192,1387 |
(S3×C23).116C22 = C22×C4○D12 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).116C2^2 | 192,1513 |
(S3×C23).117C22 = C22×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).117C2^2 | 192,1515 |
(S3×C23).118C22 = C22×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 96 | | (S3xC2^3).118C2^2 | 192,1518 |
(S3×C23).119C22 = C2×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out S3×C23 | 48 | | (S3xC2^3).119C2^2 | 192,1520 |
(S3×C23).120C22 = S3×C2.C42 | φ: trivial image | 96 | | (S3xC2^3).120C2^2 | 192,222 |
(S3×C23).121C22 = S3×C2×C42 | φ: trivial image | 96 | | (S3xC2^3).121C2^2 | 192,1030 |
(S3×C23).122C22 = C2×S3×C4⋊C4 | φ: trivial image | 96 | | (S3xC2^3).122C2^2 | 192,1060 |
(S3×C23).123C22 = S3×C23×C4 | φ: trivial image | 96 | | (S3xC2^3).123C2^2 | 192,1511 |
(S3×C23).124C22 = C22×S3×Q8 | φ: trivial image | 96 | | (S3xC2^3).124C2^2 | 192,1517 |